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as_mcmc Return a CODA mcmc object with the required samples

Description

Given a sampler object and a specification of the samples required, return either an individual coda
mcmc object, or a list of mcmc objects.

Usage

as_mcmc(sampler, selection = "theta_mu", filter = stages)

Arguments

sampler The pmwgs object containing samples to extract.

selection The selection of sample types to return.

filter A filter that defines which stage to draw samples from.

Value

An mcmc object or list containing the selected samples.

Selecting sample types

The values that can be chosen for the selection argument can be one of the following list:

"theta_mu" the model parameter estimate samples

"theta_sig" the covariance matrix estimates, returns a list of mcmc objects, one for each model
parameter.

"alpha" the random effect estimates, returns a list of mcmc objects, one for each subject.

The default value for selection is "theta_mu"
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Filtering samples

The filter argument can take one of two forms:

• An integer vector, usually a sequence of integers, that must fall within the range 1:end.

• A character vector, where each element corresponds to a stage of the sampling process, i.e.
one or more of "init", "burn", "adapt" or "sample".

The default value for filter is all stages.

Examples

par_estimates <- as_mcmc(sampled_forstmann)
par_estimates_sample_stage <- as_mcmc(sampled_forstmann, filter = "sample")
rand_eff <- as_mcmc(

sampled_forstmann,
selection = "alpha",
filter = "sample"

)

augment_sampler_epsilon

Augment existing sampler object to have subject specific epsilon stor-
age

Description

Older sampler object will be missing subject specific scaling parameter (epsilon) storage, and run-
ning a stage with an updated pmwg will fail. To fix this you can run the augment_sampler_epsilon
function to fill the appropriate array internals with NA values

Usage

augment_sampler_epsilon(sampler)

Arguments

sampler The sampler object to augment

Value

A pmwgs sampler with epsilon array set internally
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forstmann Forstmann et al.’s data

Description

A dataset containing the speed or accuracy manipulation for a Random Dot Motion experiment.

Usage

forstmann

Format

A data frame with 15818 rows and 5 variables:

subject integer ID for each subject

rt reaction time for each trial as a double

condition Factor with 3 levels for Speed, Accuracy and Neutral

stim Factor with 2 levels for Left and Right trials

resp Factor with 2 levels for Left and Right responses

Details

Details on the dataset can be found in the following paper:

Striatum and pre-SMA facilitate decision-making under time pressure

Birte U. Forstmann, Gilles Dutilh, Scott Brown, Jane Neumann, D. Yves von Cramon, K. Richard
Ridderinkhof, Eric-Jan Wagenmakers.

Proceedings of the National Academy of Sciences Nov 2008, 105 (45) 17538-17542; DOI: 10.1073/pnas.0805903105

Source

https://www.pnas.org/content/105/45/17538

init Initialise values for the random effects

Description

Initialise the random effects for each subject using MCMC.

https://www.pnas.org/content/105/45/17538
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Usage

init(
pmwgs,
start_mu = NULL,
start_sig = NULL,
display_progress = TRUE,
particles = 100

)

Arguments

pmwgs The sampler object that provides the parameters.

start_mu An array of starting values for the group means

start_sig An array of starting values for the group covariance matrix
display_progress

Display a progress bar during sampling

particles The number of particles to generate in initialisation

Details

Before sampling can start the Particle Metropolis within Gibbs sampler needs initial values for the
random effects. The init function generates these values using a Monte Carlo algorithm. One
alternative methods would be setting the initial values randomly.

Optionally takes starting values for the model parameters and the variance / covariance matrix. All
arrays must match the appropriate shape.

For example, with 5 parameters and 10 subjects, the model parameter start means must be a vector
of length 5 and the covariance matrix must be an array of 5 x 5.

If the start_mu and start_sig arguments are left at the default (NULL) then start_mu will be sampled
from a normal distribution with mean as the prior mean for eac variable and sd as the square of the
variance from the prior covariance matrix. start_sig by default is sampled from an inverse wishart
(IW) distribution. For a model with the number of parameters N the degrees of freedom of the IW
distribution is set to N*3 and the scale matrix is the identity matrix of size NxN.

Value

The sampler object but with initial values set for theta_mu, theta_sig, alpha and other values for
the first sample.

Examples

lba_ll <- function(x, data) {
x <- exp(x)
if (any(data$rt < x["t0"])) {
return(-1e10)

}
sum(

log(
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rtdists::dLBA(
rt = data$rt,
response = data$correct,
A = x["A"],
b = x["A"] + x[c("b1", "b2", "b3")][data$condition],
t0 = x["t0"],
mean_v = x[c("v1", "v2")],
sd_v = c(1, 1),
silent = TRUE

)
)

)
}
sampler <- pmwgs(

forstmann,
c("b1", "b2", "b3", "A", "v1", "v2", "t0"),
lba_ll

)
sampler <- init(sampler, particles=10)

is.pmwgs Test whether object is a pmwgs

Description

Checks whether object is a Particle Metropolis with Gibbs sampler

Usage

is.pmwgs(x)

Arguments

x An object to test

Value

logical, whether object inherits from pmwgs

Examples

if (is.pmwgs(sampled_forstmann)) {
print("sampled_forstmann object is a pmwgs")

}
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pmwgs Create a PMwG sampler and return the created object

Description

This function takes a few necessary elements for creating a PMwG sampler. Each pmwgs object is
required to have a dataset, a list of parameter names, a log likelihood function and optionally a prior
for the model parameters.

Usage

pmwgs(data, pars, ll_func, prior = NULL)

Arguments

data A data frame containing empirical data to be modelled. Assumed to contain at
least one column called subject whose elements are unique identifiers for each
subject. Can be any of data.frame, data.table or tibble, or any other data
frame like object that can have subsets created in an identical way.

pars The list of parameter names to be used in the model

ll_func A log likelihood function that given a list of parameter values and a data frame
(or other data store) containing subject data will return the log likelihood of data
given x.

prior Specification of the prior distribution for the model parameters. It should be a
list with two elements, theta_mu_mean and theta_mu_var which fully specify
the prior distribution. If left as the default (NULL) then the theta_mu_mean will
be all zeroes and theta_mu_var will be 1 on the diagonal and zero elsewhere.

Value

A pmwgs object that is ready to be initialised and sampled.

Examples

# Specify the log likelihood function
lba_loglike <- function(x, data) {

x <- exp(x)
if (any(data$rt < x["t0"])) {
return(-1e10)

}
# This is faster than "paste".
bs <- x["A"] + x[c("b1", "b2", "b3")][data$condition]

out <- rtdists::dLBA(
rt = data$rt, # nolint
response = data$stim,
A = x["A"],
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b = bs,
t0 = x["t0"],
mean_v = x[c("v1", "v2")],
sd_v = c(1, 1),
distribution = "norm",
silent = TRUE

)
bad <- (out < 1e-10) | (!is.finite(out))
out[bad] <- 1e-10
out <- sum(log(out))
out

}

# Specify parameter names and priors
pars <- c("b1", "b2", "b3", "A", "v1", "v2", "t0")
priors <- list(

theta_mu_mean = rep(0, length(pars)),
theta_mu_var = diag(rep(1, length(pars)))

)

# Create the Particle Metropolis within Gibbs sampler object
sampler <- pmwgs(

data = forstmann,
pars = pars,
ll_func = lba_loglike,
prior = priors

)

sampler = init(sampler, particles=10)
sampler = run_stage(sampler, stage="burn", iter=10, particles=10)

relabel_samples Relabel requested burn-in samples as adaptation

Description

Given a sampler object and a vector of sample indices, relabel the given samples to be adaptation
samples. This will allow them to be used in the calculation of the conditional distribution for
efficient sampling.

Usage

relabel_samples(sampler, indices, from = "burn", to = "adapt")

Arguments

sampler The pmwgs object that we are relabelling samples from
indices The sample iterations from burn-in to relabel
from The stage you want to re-label from. Default is "burn"
to The stage you want to relabel to. Default is "adapt"



run_stage 9

Value

The pmwgs object with re-labelled samples

Further information

This should not usually be needed, however if you have a model that is slow to fit, and upon
visual inspection and/or trace analysis you determine that during burn-in the samples had already
approached the posterior distribution then you can use this function to re-label samples from that
point onwards to be classed as adaptation samples.

This will allow them to be used in tests that check for the number of unique samples, and in the
building of the conditional distribution (which is used for efficient sampling)

If all old samples do not match ‘from‘ then an error will be raised.

Examples

new_pmwgs <- relabel_samples(sampled_forstmann, 17:21)

run_stage Run a stage of the PMwG sampler

Description

Run one of burnin, adaptation or sampling phase from the PMwG sampler. Each stage involves
slightly different processes, so for the full PMwG sampling we need to run this three times.

Usage

run_stage(
pmwgs,
stage,
iter = 1000,
particles = 100,
display_progress = TRUE,
n_cores = 1,
n_unique = ifelse(stage == "adapt", 100, NA),
epsilon = NULL,
p_accept = 0.8,
mix = NULL,
pdist_update_n = ifelse(stage == "sample", 50, NA)

)

Arguments

pmwgs A Particle Metropolis within Gibbs sampler which has been set up and initialised

stage The sampling stage to run. Must be one of 'burn', 'adapt' or 'sample'.
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iter The number of iterations to run for the sampler. For 'burn' and 'sample' all
iterations will run. However for 'adapt' if all subjects have enough unique
samples to create the conditional distribution then the stage will finish early.

particles The default here is 1000 particles to be generated for each iteration, however
during the sample phase this should be reduced.

display_progress

Display a progress bar during sampling.

n_cores Set to more than 1 to use mclapply. Setting n_cores greater than 1 is only
permitted on Linux and Mac OS X machines.

n_unique A number representing the number of unique samples to check for on each iter-
ation of the sampler (An initial test for the generation of the proposal distribu-
tion). Only used during the 'adapt' stage.

epsilon A value between 0 and 1 that controls the extent to which the covariance matrix
is scaled when generating particles from the previous random effect. The default
will be chosen based on the number of random effects in the model.

p_accept A value between 0 and 1 that will flexibly tune epsilon to achieve an acceptance
ratio close to what you set p_accept to. The default is set at 0.8.

mix A vector of floats that controls the mixture of different sources for particles.
The function numbers_from_proportion is passed this value and includes extra
details on what is accepted.

pdist_update_n The number of iterations in the sample stage after which the proposal distribu-
tion will be recomputed.

Details

The burnin stage by default selects 50 parameter sample (selected through a Gibbs step) and 50 the
previous random effect of each subject. It assesses each particle with the log-likelihood function
and samples from all particles weighted by their log-likelihood.

The adaptation stage selects and assesses particle in the same was as burnin, however on each
iteration it also checks whether each subject has enough unique random effect samples to attempt
to create a conditional distribution for efficient sampling in the next stage. If the attempt at creat-
ing a conditional distribution fails, then the number of unique samples is increased and sampling
continues. If the attempt succeeds then the stage is finished early.

The final stage (sampling) by default samples predominantly from the conditional distribution cre-
ated at the end of adaptation. This is more efficient and allows the number of particles to be reduced
whilst still getting a high enough acceptance rate of new samples.

Once complete each stage will return a sampler object with the new samples stored within it.

The progress bar (which is displayed by default) shows the number of iterations out of those re-
quested which have been completed. It also contains additional information at the end about the
number of newly generated particles that have been accepted. This is show as New(XXX average
across subjects of newly sampled random effects accept rate. See accept_rate for more detail on
getting individual accept rate values per subject.

Value

A pmwgs object with the newly generated samples in place.
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Examples

library(rtdists)
sampled_forstmann$data <- forstmann
run_stage(sampled_forstmann, "sample", iter = 1, particles = 10)

sampled_forstmann A sampled object of a model of the Forstmann dataset

Description

A pmwgs object with a limited number of samples of the Forstmann dataset.

Usage

sampled_forstmann

Format

A pmwgs object minus the data. A pmwgs opbject is a list with a specific structure and elements,
as outlined below.

par_names A character vector containing the model parameter names

n_pars The number of parameters in the model

n_subjects The number of unique subject ID’s in the data

subjects A vector containing the unique subject ID’s

prior A list that holds the prior for theta_mu (the model parameters). Contains the mean (theta_mu_mean),
covariance matrix (theta_mu_var) and inverse covariance matrix (theta_mu_invar)

ll_func The log likielihood function used by pmwg for model estimation

samples A list with defined structure containing the samples, see the Samples Element section for
more detail

Details

The pmwgs object is missing one aspect, the pmwgs$data element. In order to fully replicate
the full object (ie to run more sampling stages) you will need to add the data back in, via sam-
pled_forstmann$data <- forstmann

Samples Element

The samples element of a PMwG object contains the different types of samples estimated by PMwG.
These include the three main types of samples theta_mu, theta_sig and alpha as well as a number
of other items which are detailed here.

theta_mu samples used for estimating the model parameters (group level), an array of size (n_pars
x n_samples)
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theta_sig samples used for estimating the parameter covariance matrix, an array of size (n_pars x
n_pars x n_samples)

alpha samples used for estimating the subject random effects, an array of size (n_pars x n_subjects
x n_samples)

stage A vector containing what PMwG stage each sample was drawn in

subj_ll The winning particles log-likelihood for each subject and sample

a_half Mixing weights used during the Gibbs step when creating a new sample for the covariance
matrix

last_theta_sig_inv The inverse of the last samples covariance matrix

idx The index of the last sample drawn

Source

https://www.pnas.org/content/105/45/17538

https://www.pnas.org/content/105/45/17538
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